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Abstract—This paper introduces a nonlinear vector-based fea-
ture mapping approach to extract robust features for automatic
speech recognition (ASR) of overlapping speech using a micro-
phone array. We explore different configurations and additional
sources of information to improve the effectiveness of the feature
mapping. First, we investigate the full-vector based mapping of
different sources in a log mel-filterbank energy (log MFBE) do-
main, and demonstrate that retraining the acousticmodel using the
generated training data can help improve the recognition perfor-
mance. Then we investigate the feature mapping between different
domains. Finally in order to improve the qualities of the mapping
inputs we propose a nonlinear mapping of the features from mul-
tiple beamformed sources, which are directed at the target and
interfering speakers, respectively. We demonstrate the effective-
ness of the proposed approach through extensive evaluations on
the MONC corpus, which includes non-overlapping single speaker
and overlapping multi-speaker conditions.

Index Terms—Beamforming, microphone array, neural net-
work, speech recognition, speech separation.

I. INTRODUCTION

S PEECHoverlap occurs frequently in natural conversations.
For example, in a study on overlap in telephone conver-

sations and multiparty meetings, it was found that 30-50% of
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all speech spurts include one or more frames of simultaneous
speech by another talker [1]; In another study of 26 different
meetings from the NIST meeting speech recognition evalua-
tions, 12% of all foreground speaking time was overlapped by
speech from one or more speakers [2]. Because of the detri-
mental effects of overlap, automatic recognition of speech in
the presence of multiple simultaneous speakers - the so-called
‘cocktail party’ condition - remains a challenging problem (e.g.
[1] [3], etc.). In such circumstances, headset microphones po-
sitioned next to the speakers’ mouths have, to date, provided
the best recognition performance, however they have a number
of disadvantages in terms of cost and ease of use. The alterna-
tive is to capture the speech from one or more distant micro-
phones located in the far field, however, such “remote micro-
phone recordings” generally result in significantly reduced ASR
performance.
Recent research has focused on techniques to efficiently in-

tegrate inputs from multiple distant microphones with the goal
of improving the ASR performance. The most fundamental and
important multi-channel method is the microphone array beam-
former method, which consists of enhancing signals emanating
from a particular location by combining the individual micro-
phone signals. The simplest technique is the delay-and-sum
(DS) beamformer, which compensates for delays to micro-
phone inputs so that the target signal from a particular direction
synchronizes, while noises from different directions do not.
Other more sophisticated beamforming methods, such as
the superdirective beamformer [4] and Generalized Sidelobe
Canceller (GSC) [5], optimize the beamformer to produce a
spatial pattern with a dominant response for the location of
interest. The main limitation of these schemes is the issue of
signal cancellation, which is more serious in the presence of
overlapping speech.
It is important to note that the motivation behind microphone

array techniques such as beamforming described above is to
enhance or separate the speech signals, and as such they are
not designed directly in the context of ASR. Particularly during
periods of speaker overlap, improving the signal-to-noise ratio
(SNR) of the signals captured through distant microphones may
not necessarily be the best means of extracting features for ro-
bust ASR on distant microphone data [2], in which the target and
interfering speech signals are mixed. This provides ample mo-
tivation for the investigation of other distant microphone pro-
cessing techniques that specifically target the improvements of
ASR performance.
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In this paper we introduce a novel feature mapping approach
from multiple-microphone inputs specifically for the recogni-
tion of overlapping speech. In our feature mapping frameworks,
the features of clean target speech are estimated (or approxi-
mated) by using the multiple distant speech sources. This is
implemented implicitly and simultaneously by the following
two phases: 1) mapping multiple mixed sources into one target
source; and 2) mapping the distant sources into a clean target
source. These two phases are explored by employing different
configurations of additional sources of information in the
context of automatic speech recognition of overlapping speech
based on a microphone array. More specifically, we firstly
introduce full-vector based mapping in the log mel-filterbank
energy (log MFBE) domain. Since the speech energies of
different speakers may lie in different filterbanks, it is possible
to separate the target and interfering speeches in overlapping
speech scenarios. Integrating the statistical distribution of
clean speech with the properties of the de-correlations of
Mel-frequency ceptral coefficients (MFCC), we then propose
the mapping of the exacted features between different domains.
Finally we propose a nonlinear mapping of features from the
target and interfering distant sound sources to the clean target
features, which leads to a non-linear processing (fusion) of
the target speech and interfering speech. In this configuration
two or three designed beamformers are directed at the target
and interfering speakers, and a frequency domain binary mask
post-filter is followed for obtaining the target and interfering
speech more accurately. Experiments on the multi-channel
numbers corpus (MONC) [6] show that our method yields a
significant improvement in the ASR performance in overlap-
ping speech scenarios, and can even avoid the adaptation steps
which are commonly used in multi-condition ASR systems. We
also demonstrate that the better quality of the estimated target
and interfering speech as the inputs are helpful when using our
non-linear feature mapping approach.
The paper is organized as follows. In Section II, we briefly

describe related work. In Section III we present our proposed
neural network basedmapping approach and theoretically prove
that minimizing the mean squared error (MMSE) of the static
feature vectors also results in MMSE in their delta (accelera-
tion) coefficients. In Section IV, we describe the experimental
setup. From Section V to Section VII, we present the exper-
imental studies using different mapping configurations, on a
full-vector-wise mapping in the same log mel-filterbank energy
(log MFBE) domain, on mapping from log MFBEs to MFCCs,
and on the mapping frommultiple sound sources. In Section IX,
we summarize our main conclusions.

II. RELATED WORK

In [7] a superdirective beamformer and further post-filtering
were proposed to suppress interfering speech. However, in
the case of overlapping speech (with coherent noise), the
diffuse noise model used in the superdirective beamformers is
inaccurate and may consequently introduce artifacts into the re-
constructed signal. In [8] Kumatani et al. proposed an adaptive
beamforming approach with a minimum mutual information

criterion technique for the separation of overlapping speech.
In their beamforming framework, one sub-band-domain beam-
former in the GSC configuration was constructed for each
source, and the active weight vectors of both GSCs were then
jointly optimized to obtain two output signals with minimum
mutual information (MMI), which is widely employed in blind
source separation (BSS) [9] and independent component anal-
ysis (ICA) [10]. However these methods are basically linear
methods, and to some degree their performance depends on
the specified probability density functions (pdfs) of the Fast
Fourier Transform (FFT) components of clean speech.
In [11], a likelihood of maximizing beamforming

(LIMABEAM) was proposed to generate a sequence of
features rather than a waveform. In this work a filter-and-sum
beamformer structure is adopted, the beamformer is optimized
by maximizing the likelihood of the correct hypothesis which
comes from the speech recognition system. Their studies are
directly applicable in the context of improving the performance
of their automatic speech systems. Although some ASR
improvement was shown on the condition of additive noise and
reverberation, the algorithms result in a linear feature mapping
approach which cannot recover the clean features very well.
While the beamforming methods result in a linear trans-

formation, neural network (NN) [12] based mappings lead
to a non-linear solution, and feature based mapping using
neural networks has received considerable interest for robust
ASR [13]–[17]. The idea of the feature mapping method
is to obtain ‘enhanced’ or ‘clean’ features from the ‘noisy’
features extracted from the distant microphone recordings.
The studies in [13][14] concentrated solely on the mapping
of the original distant features to clean features. In [15]–[17],
a microphone array is used and non-linear feature mapping
of a DS enhanced speech signal to a clean speech signal is
performed in the mel-frequency cepstral coefficient (MFCC)
domain. In their mapping framework, a multi-layer perceptron
(MLP) was trained for each MFCC component. We distinguish
our approach by exploiting redundant or irrelevant information
in a full-vector based mapping, using additional sources of
information to improve the effectiveness of the mapping.
Recently deep learning based speech recognition [18]–[20]

has received great interest. From the perspective of feature
learning, the ideas and essences of our method and deep neural
nets (DNN) for converting multiple noisy speech features
to clean speech features are the same. Therefore the feature
mapping studies in this paper can be viewed to be among deep
learning based feature learning frameworks.
This paper is based on and extends our previous works

[21]–[23]. In this paper we systematically explain the concept
of our non-linear feature mapping approach and reformulate
mathematically extracting multiple noisy feature vectors into
one clean feature vector. More precisely, we modified the dia-
grams inside several figures to illustrate the different mapping
frameworks more elaborately; we also perform the investi-
gations and comparisons of the statistical distribution of log
MFBEs and MFCCs of the clean speech, the generated training
data, and the estimated test data; and several experiments are
also added (e.g., vector-based mapping using array sources and
DS beamformer source; using linear transform based mapping
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Fig. 1. Schematic representation of a network parametrized by that should
transform observations into estimated clean speech .

when using the feature vectors extracted from the center mi-
crophone speech and a DS beamformer, the exploration of the
improvement of ASR performance in more serious overlapping
speech scenario (with two interfering speakers) by using three
beamformers, which are directed at the target speaker and the
two interfering speech, etc.).

III. FEATURE MAPPING APPROACH

Assume that we are given samples of feature vectors ex-
tracted from ‘noisy’ distant microphone recordings at frame
, denoted by column-vectors: . If
we concatenate them into a longer vector we have

(1)

Furthermore we consider a process that approximate the feature
vector of clean speech . In our mapping approach we take
input features extracted from ‘noisy’ distant microphone record-
ings (either directly or after microphone array beamforming)
and map these to ‘clean’ recordings (i.e., estimate the features of
clean speech). This process may be implemented by a linear or
non-linear transformation with the parameter set (see Fig. 1).
In the linear case, the feature vector of clean speech can be
obtained by

(2)

where the parameter set is obtained by minimizing
the mean squared error:

(3)

over the training examples. Here, denotes the number of
training examples (frames). In terms of matrix notation, Eq. (3)
can be written as [24][25]

(4)

where and
consist of training examples.

The optimal can be solved as

(5)

Fig. 2. A multilayer perceptron (MLP) network with one hidden layer, where
and are weight matrices of input-layer and output-layer, respectively.

In the non-linear case, we employ a multilayer perceptron
(MLP) [12] with one hidden layer for implementing non-linear
mapping. Formally, at -th frame the -th component of the
feature vector of clean speech can be estimated using the
MLP:

(6)

where and are weight matrices of the input-layer and
output-layer, respectively. is the sigmoidal activation
function and has the form:

(7)

Fig. 2 shows such a multiple-output multilayer perceptron
(MLP) network. By minimizing Eq. (3) the optimal parameters

can be obtained through the error back-propaga-
tion algorithm [12], [26].
Note that clean speech is required for finding the optimal pa-

rameters in the neural network training, while in the test phase
clean speech is no longer required, i.e., it is predicted from the
input feature vectors from the enhanced target speech and the
interfering speech.
With the assumption that the distribution of the target data

is Gaussian-distributed, minimizing the mean square error in
Eq. (3) is the result of the principle of maximum likelihood [26].
From the perspective of blind source separation (BSS) and inde-
pendent component analysis (ICA), the principle of maximum
likelihood, which is highly related to theminimization ofmutual
information between clean sources, can also be employed for es-
timating the clean sources [27]. Their methods, however, lead
to a linear transformation, and the probability densities of the
sources must be estimated correctly, while our mapping method
can be highly non-linear and does not require the information
concerning the probability densities of the sources.
On the other hand, delta and acceleration feature vectors have

been proved to be efficient in improving ASR performance
[28][29], and thus they are usually used in the recognizer. The
delta feature vector (coefficients) at frame are computed
using the neighbor feature vectors from to frames
in the following regression formula [30]:

(8)

where and denote the corresponding static
feature vectors at frame ( ) and ( ), respectively. We
next theoretically prove that minimizing the mean squared error
(MMSE) of the static feature vectors also results in MMSE for
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Fig. 3. The configuration of speech data recordings.

their delta coefficients (likewise for their acceleration coeffi-
cients), and thus we do not need to perform feature mapping
for the delta and acceleration coefficients:

where denotes the cost function defined in Eq. (3). Here we as-
sume the estimated errors, and

, are uncorrelated. Therefore our feature mapping of
the static feature vectors leads to the minimization optimization
of their delta and acceleration coefficients, which helps to im-
prove the ASR performance.

IV. EXPERIMENTAL DATA AND SETUP

The Multichannel Overlapping Numbers Corpus (MONC)
[6] was used to perform speech recognition experiments. This
database comprises a task for continuous digit recognition in
the presence of overlapping speech. The configuration of speech
data recordings in the MONC [6] is shown in Fig. 3. The data-
base was collected in a moderately reverberant, m m

m rectangular room (reverberation time ).
Three loudspeakers (L1, L2, L3) were placed at 90 spacing
around the circumference of a 1.2 m diameter circular table at

Fig. 4. Diagram of the feature mapping based speech recognition. and
denote the training sets of the feature vectors extracted from distant mi-

crophone recordings and from clean speech, respectively. and de-
note the feature vectors extracted from distant microphone recordings and the
estimated feature vector of clean speech at -th frame, respectively.

an elevation of 35 cm. The placement of the loudspeakers simu-
lated the presence of a desired speaker (L1) and two competing
speakers (L2 and L3) in a realistic meeting room configuration.
An 8-element, equally spaced, circular array of 20 cm diameter
was placed in the middle of the table, and an additional micro-
phone was placed at the center of the array. All subsequent dis-
cussion will refer to the recording scenarios as S1 (no overlap-
ping speech), S12 (with 1 competing speaker L2), S13 (with 1
competing speaker L3), and S123 (with 2 competing speakers
L2 and L3). The training data are equivalent to condition S1 of
the development and evaluation sets.
The speech recognition experiments were carried out using

whole-word HMMs. The word models had 16 emitting states,
and each was modeled by a GMM of 20 components. The ‘sil’
and ‘sp’ models had three and one emitting state, respectively,
with 36 Gaussian mixture components. The duration of the fea-
ture analysis was 25 msec with a frame shift of 10 msec. A
23-channel log-MFB analysis was applied and was transformed
into 12 mel-frequency cepstral coefficients (MFCCs). Thus, the
feature vector comprises 12 MFCCs and log-energy with cor-
responding delta and acceleration coefficients. HTK [30] was
used for each feature extraction of the front-ends and training
the acoustic model. In addition, maximum a posteriori (MAP)
[31][32] adaptation was performed on these models using the
development set for each scenario (thus, each adapted system
comprised a set of four models, one adapted to each of the
recording scenarios).
The corpus is divided into training data (6,049 utterances) and

per-condition data sets for development/adaptation (2,026 ut-
terances) and testing (2,061 utterances). In the feature mapping
methods, the MLP is trained from data drawn from the develop-
ment data set which consists of 2,000 utterances (500 utterances
of each recording scenario in the development/adaptation set).
The total number of training examples (frames) is 371,543. A
diagram of the model training and feature estimation is given
in Fig. 4. The size of the MLPs across the different ASR ex-
periments were kept the same in this paper. Therefore the total
number of parameters in the MLP was set up experimentally to
be equal to 10% of the training frames [21].
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V. FEATURE VECTOR MAPPING IN THE LOG MEL-FILTERBANK
ENERGY DOMAIN

We first estimated the log mel-filterbank energy (MFBE) vec-
tors of clean speech by mapping those of distant speech1. The
use of MMSE in the log spectral domain is motivated by the
fact that the log spectral measure is more related to the sub-
jective quality of speech [33] and that some better results have
also been reported with log distortion measures [34]2. On the
other hand, in overlapping speech scenarios the speech ener-
gies of different speakers may lie in different filterbanks, which
is advantageous to separate the target and interfering speeches
through our feature learning methods. In [15]–[35], component-
independent mapping is used, where an MLP corresponds to
each component of a feature vector. Taking into consideration
the log mel-filterbank energies are correlated, we propose to
perform a full-vector based mapping via a universal MLP with
the outputs comprising 23 log MFBE components and a log en-
ergy. We confirmed the improvement of speech recognition ac-
curacy [21]. We performed two standard ASR experiments as
our baselines:
1) center: Using the MFCCs extracted from the center micro-
phone speech signal.

2) DS: Using the MFCCs extracted from the delay-and-sum
(DS) beamformer enhanced speech signal.

Using the full-vector based mapping with MLP, we per-
formed the following ASR experiments:
1) MA: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs extracted from all the
8-channel array speech as input, as shown in Fig. 4.

2) MDS: MFCCs extracted using log MFBEs estimated
by mapping MLP that takes log MFBEs extracted from
DS-enhanced speech as input.

3) MDSC: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs of both DS-enhanced
speech and center microphone speech as inputs.

A diagram of the feature mapping based speech recognition
using delay-and-sum beamformer and center speech with
re-training the HMMs is shown in Fig. 5, in which Eq. (6) can
be reformulated as

(9)

where and denote the feature vectors extracted from
the distant center microphone speech and the delay-and-sum
beamformer at -th frame, respectively. is the sigmoidal
activation function. and are weight matrices of input-layer
and output-layer, respectively. We also performed the mapping
for the training data as well (and then re-training the acoustic
model) to further reduce the mismatch between training and
testing conditions. We refer to it as “+RT”.
Table I shows the recognition results in terms of recogni-

tion accuracies. The upper and lower halves of this table depict

1The estimated logMFBEs are then transformed intoMFCCs for recognition.
2In [34]. Porter and Boll found that for speech recognition, minimizing the

mean squared errors in the log is superior to using all other DFT func-
tions and to spectral magnitude subtraction.

Fig. 5. Diagram of the feature mapping based speech recognition using delay-
and-sum beamformer and center speech with re-training the HMMs. ,

, and denotes the training sets of the feature vectors extracted
from center microphone speech, delay-and-sum beamformer, and clean speech,
respectively. and denote the feature vectors extracted from center mi-
crophone speech, delay-and-sum beamformer at -th frame, respectively.
denotes the estimated feature vector of clean speech at -th frame.

TABLE I
RECOGNITION ACCURACIES (AS PERCENTAGES) OF DIFFERENT SYSTEMS
FOR VECTOR-BASED MAPPING STUDIES. UPPER HALF OF THE TABLE
REPRESENTS ACCURACIES FOR NO ADAPTATION CASE AND LOWER
HALF OF THE TABLE REPRESENTS ACCURACIES FOR ADAPTATION
CASE. THE BEST SYSTEM BASED UPON AVERAGE ACCURACY

ACROSS ALL THE CONDITIONS IS IN BOLDFACE FONTS

the recognition results without and with the adaptation of the
acoustic models. Some of the major observations are:
• ASR performance drops when going from the single non
overlap speaker condition S1 to the overlap speaker condi-
tions S13, S123, and S123 with the three speaker overlap
condition has the worst performance.

• “DS” is better than “center”, and model level adaptation
improves performance, which has also been observed pre-
viously in the literature [36].

• Irrespective of the method, the mapping approach always
yields significant improvement in recognition accuracies
for all conditions when compared with “center” and “DS”
(except for the S1 condition after adaptation), with the im-
provements being significantly pronounced in the overlap
conditions.

3In the S12 condition the speakers are closer than the S13 condition which can
explain why the S12 condition has a lower performance than the S13 condition.
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Fig. 6. Probability density functions (pdf) of the first and second order log
MFBEs (upper half) and MFCCs (lower half) of the original clean training data
(bold solid line), generated training data (dashed line), and estimated test data
in S12 recording scenario (thin solid line).

• “MDS” performs better than “MA” suggesting that the
quality of the features for mapping is important. “MDSC”
performs better than “MDS” indicating that mapping the
features and combining them from different “versions” of
the speech signal at the input of the MLP is beneficial.

• For the MLP-based mapping methods, the feature adap-
tation for the training data and a subsequent re-training
the acoustic model contributes to the improvement of the
recognition performance in the overlapping speech sce-
narios. Fig. 6 shows the effect on the probability density
functions (pdf) by adapting the training data of the acoustic
model. It is observed that the mismatch of the probability
density functions (pdf) between the training and test con-
ditions is reduced by using the mapping-generated training
data, rather than the original clean training data.

• Among the mapping methods “MDSC+RT” stands out as
the best, demonstrating the effectiveness of incorporating
combined features from different “versions” of speech
signal as the input of the MLP, and re-training the acoustic
model over the generated training data.

The last lines of the upper and lower halves of Table I in-
dicate the recognition performance using linear mapping (i.e.,
Eq. (2)) rather than nonlinear mapping (i.e., Eq. (6)). It can be
seen that non-linear mapping performs significantly better than
linear mapping. Therefore non-linear mapping, and re-training
the acoustic model over the generated training data, is adopted
in the following studies.

VI. FEATURE MAPPING BETWEEN DIFFERENT DOMAINS

In the above section, we estimated the log mel-filterbank en-
ergy (MFBE) vectors of clean speech by mapping those of dis-
tant speech. In the log MFBE domain, in overlapping speech
scenarios the speech energies of different speakers may lie in
different filterbanks, and the features are redundant and corre-
lated, which are advantageous to separate the target and inter-
fering speeches through our feature learning methods. In fact,

TABLE II
RECOGNITION ACCURACIES (AS PERCENTAGES) OF THE MAPPING THE LOG
MFBES TO MFCCS. UPPER HALF OF THE TABLE REPRESENTS ACCURACIES
FOR NO ADAPTATION CASE AND LOWER HALF OF THE TABLE REPRESENTS

ACCURACIES FOR ADAPTATION CASE

the mapping need not to be performed between equivalent do-
mains. From Fig. 6 (bold solid lines) it can be seen that the
probability densities of the log MFBEs of the clean target are
bi-modal (possibly because of the low SNR segments), rather
than Gaussian. In this case, the maximum likelihood principle
does not lead to minimizing the mean square error (MMSE),
which we employed in Eq. (3). Therefore minimizing the mean
square error (MMSE) in Eq. (3) will not be optimal if we per-
form the mapping in the log MFBE domain. Alternative map-
ping may be performed in the cepstral domain, where clean
speech has an approximate Gaussian distribution (see Fig. 6),
and the features are de-correlated and more straightforward in
the context of speech recognition. It is advantageous to perform
non-linear mapping of the features from the log mel-filterbank
energy (log MFBE) domain to the features in the MFCC do-
main. We compared its ASR performance with those using the
equivalent mapping in the MFCCs domain.
Table II shows the recognition results in terms of recognition

accuracies compared to the equivalent mapping in the MFCCs
domain. Here the best configuration in Table I, i.e. the non-
linear mapping of the features vectors extracted from both the
DS beamformer and the center microphone speech, is used. A
re-training of the acoustic model over the generated training
data is also included. The upper and lower halves of this table
depict the recognition results without and with the adaptation of
acoustic models. Some of the major observations are:
• The mappings from log MFBEs to MFCCs perform better
than those from MFCCs, which confirms that the mixed
filterbank inputs retain more information (e.g., different
speech energy distributions over the filterbanks from the
target and interfering speakers). Meanwhile, one can have
the hypothesis that the smaller dynamic range of the log
MFBEs as shown in Fig. 6 is advantageous for regression
optimization [11].

• Additionally, compared with Table I, the mappings from
log MFBEs to MFCCs perform better than those from log
MFBEs to log MFBEs, which demonstrates that mini-
mizing the mean square error (MMSE) in MFCCs domain
is more advantageous than in the log MFBE domain. On
the other hand, the properties of the de-correlations of
MFCCs is helpful for speech recognition, but MFCCs are
obtained by using a set of fixed discrete Cosine transforms
(DCT). From Table I, it is suggested that our feature
mapping methods can automatically de-correlate the log
MFBE features, but in a more flexible way.

• The gains from model adaptation are marginal when we
perform the feature mapping between different domains.
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This may be explained by the fact that the mapping
methods evaluated are already very effective at sup-
pressing the influence of interfering speakers on the
extracted features.

Therefore, the feature mapping from log MFBEs to MFCCs
is employed in the following studies.

VII. FEATURE MAPPING FROM MULTIPLE
BEAMFORMED SOURCES

A. Proposed Method

In Section V, we found that augmenting the features to be
mapped from the DS beamformer together with the center mi-
crophone could improve the mapping. The mapping method
could be viewed as a non-linear processing technique that aims
to approximate the clean speech through the fusion of the esti-
mated (or enhanced) target speech and interfering speech4. If the
qualities of the estimated target speech and interfering speech
are improved, then it is highly possible that the clean speech
can be approximated with greater precision. We pursued this
idea further by mapping both the estimated target and inter-
fering sound sources. The target and interfering audio signals
are obtained by directing the DS beamformer in the directions
of these sound sources. However, there still remain consider-
able undesired signal components in the DS outputs, thus, we
further process them using a frequency-domain binary masking
post-filter [37] to eliminate unwanted signal components. The
frequency-domain masking post-filter is formulated as follows:
• If is the frequency-domain output of the -th beam-
former for frequency bin , the post-filtered output
is obtained as:

(10)

where the frequency response of the post-filter is estimated
by:

(11)

and is the number of beamformers.
In S15, S12, S13 scenarios, the two beamformers (i.e., )

are designed to correspond to the target and interfering speech.
In the S123 scenario, the three beamformers (i.e., ) are de-
signed to be directed to the target speaker and the other two in-
terfering speakers6. Therefore, in this section we propose to sep-
arate the target and interfering speech using DS beamforming
followed by a frequency domain binary-masking based post-
filter, and then perform our feature mapping method between
different domains. In our experiments, once the beamformed

4The center microphone signal could be viewed as a mixture of the target and
interfering noise.
5In the S1 scenario (only one active speaker), the secondary beamformer is

directed to L3 as shown in Fig. 3, and thus the output of another beamformer is
noise-like.
6Note that in this scenario the designation of the beamformers is different

from our previous work [22], in which only two beamformers are used for the
S123 scenario: one beamformer is directed at the target speech (L1 in Fig. 3)
and the other directed at the middle position of the two interfering speakers (L2
and L3 in Fig. 3).

Fig. 7. Diagram of the feature mapping based speech recognition using
two beamformers with their poster-filterings. Re-training the HMMs is also
included. and denotes the training sets of the feature vectors
extracted from the beamformers directed to target speaker and interfering
speaker, respectively. denotes the training sets of the feature vectors
extracted from clean speech. and denote the feature vectors
extracted from the beamformers directed to target speaker and interfering
speaker at -th frame, respectively. denotes the estimated feature vector
of clean speech at -th frame.

speech signals were obtained, the 23-order log MFBEs were ex-
tracted and used as inputs in our mapping method to approx-
imate the MFCCs of clean speech. A diagram of the feature
mapping based speech recognition using two beamformers7with
their subsequent poster-filtering is shown in Fig. 7, in which the
-th component of the MFCC feature vector of clean speech at
frame can be estimated by:

(12)

where and denote the log MFBE feature vectors ex-
tracted from the beamformers directed at the target and inter-
fering speakers, respectively. and indicate their corre-
sponding weights from the input layer to the -th hidden neuron.

indicate the weights from the -th hidden neuron to the -th
output.

B. Properties of the Proposed Method

We can now define the following properties of the proposed
method.
1) From Eq. (12) the proposed non-linear feature mapping
can be viewed as a generalized spectral subtraction in the
feature domain8, and the weights (or gains) are optimized
using a minimummean square error (MMSE) or maximum
likelihood criterion [25][26].

2) The weights (or gains) are obtained by training the MLP
universally on the collections of different overlapping sce-
narios (or number of sources), and in the test phase they
can automatically adapt to different scenarios.

7three beamforms for the S123 scenario.
8i.e., the interfering components embedded in the beamformer directed to

target speech may be subtracted by another beamformer directed to interfering
speech.
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TABLE III
RECOGNITION ACCURACIES (AS PERCENTAGES) OF DIFFERENT METHODS.
UPPER HALF OF THE TABLE REPRESENTS ACCURACIES FOR NO ADAPTATION
CASE AND LOWER HALF OF THE TABLE REPRESENTS ACCURACIES FOR
ADAPTATION CASE. THE BEST SYSTEM BASED UPON AVERAGE ACCURACY
ACROSS ALL THE CONDITIONS IS SHOWN IN BOLDFACE FONTS. THE

RECOGNITION ACCURACIES SHOWN INSIDE THE PARENTHESIS DENOTE THE
MAPPING FROM THE TWO BEAMFORMED SPEECH, WHICH IS USED IN [22]

3) The proposed method is established on the estimation of
the target and interfering speech, which will be helpful in
estimating the features of clean speech more accurately.

4) Generally speaking, we can universally employ two beam-
formers, directed at the target speaker and the other di-
rection respectively. Unlike some blind source separation
methods [9] (e.g., independent component analysis (ICA)
[10]) the number of sources need not be prior knowledge.

C. Experimental Results

We performed the following ASR experiments:
1) DSmask: MFCCs extracted from the speech enhanced by
the DS and subsequent masking post-filter.

2) MmDS: MFCCs estimated by the mapping of the two or
three DS-enhanced speech sources;

3) MmDSmask: MFCCs estimated by the mapping of the two
or three DS+masking enhanced speech sources.

Table III shows the recognition performance of the different
experiments described above. In the S123 scenario, we also
compared the ASR performance of the mapping from the three
beamformed speech sources with that of the mapping from
the two beamformed speech sources, shown in parenthesis in
Table III. We can draw following inferences from the results:
• The frequency-domain masking post-filter is very effective
at improving the quality of the separated speech (verified
by informal listening). In the three speech-overlapping sce-
narios, the ASR performance is greatly improved by the
frequency-domain masking post-filter.

• The mapping of the multiple DS-enhanced speech
(“MmDS”) sources yields significant improvement of
the ASR performance compared with DS (especially
without model adaptation), indicating that the interfering
speech provides important information for mapping.
Compared with Table II, the recognition accuracies are
significantly improved. This suggests that estimating the
interfering speech more accurately (using DS-enhanced
interfering speech instead of the center microphone signal)
is very helpful for the mapping method.

• The frequency-domain binary masking post-filter is also
helpful for the mapping method. Except for the S1 condi-
tion, “MmDSmask” yields the best recognition system for
overlap speech conditions. The well-estimated MFCC tra-
jectories, as shown in Fig. 8, also illustrate the advantages
of “MmDSmask”. However, compared with “MmDS” the

Fig. 8. Effect of the mapping method on the first and second MFCC trajecto-
ries in S12 recording scenario. bold solid line: MFCC trajectories of the clean
speech; dash-dot line: MFCC trajectories of beamformed speech. thin solid line:
the mapped MFCC trajectories.

improvement of “MmDSmask” is not significant, which
can be explained by the hypothesis that the MLP performs
a similar role to the masking post-filter, both being pro-
vided with essentially the same information as the input
(source and interfering speech) though in a different repre-
sentation (FFT versus MFCC).

• In the S123 scenario, the mapping from the three beam-
formed speech sources (respectively directed to each of
speakers) performs slightly better than that from the two
beamformed speech sources. This demonstrates that the
better qualities of the estimated interfering speech are very
helpful for improving the ASR performance using the fea-
ture mapping method.

• Across the S1, S12, S13, and S123 scenarios, there is a
significantly reduced mismatch between the four record-
ings. Moreover, for the mapping methods, the gains from
model adaptation can be ignored. This may be explained
by the fact that the feature mappings of multiple beam-
formed sources are very effective at approximating the
target speech and suppressing the influence of interfering
speakers on the extracted features. This avoids the need for
adaptation to each scenario, which is required in the con-
ventional multi-condition speech recognition systems.

VIII. DISCUSSIONS

Some issues concerning the proposed feature mapping
method are worthy of investigating furthermore. In the fol-
lowing experiments, the adaptation parts are omitted for saving
the space.
The proposed feature mapping method is based on MLP

and is inherently non-linear. Some conventional feature trans-
forms like feature-space maximum likelihood linear regression
(fMLLR) [38] have been proven to be able to improve noise
robustness of speech recognition. On the other hand, more
recently deep neural networks (DNN) are employed to denoise
the noisy speech [39][40]. For comparisons we performed the
experiments using the supervised fMLLR and DNN. The same
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TABLE IV
RECOGNITION ACCURACIES (AS PERCENTAGES) OF FEATURE-SPACE
MAXIMUM LIKELIHOOD LINEAR REGRESSION (FMLLR) AND

DENOISING AUTOENCODER (DAE). FOR COMPARISON “DSMASK” AND
“MMDSMASK” ARE CITED FROM THE UPPER PART OF TABLE III.

“MA” IS CITED FROM THE UPPER PART OF TABLE I

2,000 utterances from the development data set are used for
training. In the fMLLR case the adaptation features are based
on MFCCs obtained from “DSmask” in Section VII. In the
DNN case a denoising autoencoder (DAE) with three hidden
layers (500 neurons per layer) similar to [39] is trained over
the 2000-utterance noisy-clean speech pairs9. After pretraining
in a layer-by-layer manner, all the layers are stacked to form a
denoising autoencoder for fine tuning. Note that our proposed
method in Section VII are the non-linear mappings of two
(or three) beamformed sources, while fMLLR applies a linear
adaptation on a single beamformed source only. DAE is a
denoising neural network with the inputs of eight original
noisy sources. As shown in Table IV, fMLLR performs better
than “DSmask” and “MmDSmask (linear)”10in the upper part
of Table III, but not as well as the proposed “MmDSmask”.
Although compared with “MA” in the upper of Table I, DAE
provides slightly better performance but with a higher compu-
tation cost, it performs significantly worse than “MmDSmask”.
These demonstrate the effectiveness of the proposed non-linear
mapping of multiple beamformed sources.
Simple delay-and-sum (DS) beamformers are used in the ex-

periments aforementioned. In [41][42], it is shown that a super-
directive (SD) beamformer with a subsequent frequency-do-
main binary masking post-filter in Eqs. (10) and (11) can consis-
tently yield super performance in meeting scenarios. We there-
fore incorporated it in our proposed method, denoted by “MmS-
Dmask” in Table V. Like in Section VII two super-directive
beamfomers directed to the target speech and interferers are
used as the inputs of MLP. Table V shows the recognition per-
formance with this setup. Indeed, super-directive beamformer
with a subsequent binary masking post-filter yields better per-
formance than delay-and-sum beamfomer with a same post-
filter. A feature-space maximum likelihood linear regression
(fMLLR) can also help improve the performance. However like
“MmDSmask” vs “MmDS” in the upper part of Table III, the
gains of “MmSDmask” from “MmDSmask” are quite marginal.
This demonstrates that the proposed mapping method is not de-
pendent on the qualities of multiple beamformed sources.
Generalization to unseen conditions is worth investigating

for supervised learning algorithms, and thus we design the

9The inputs of the DAE are the log MFBEs of eight noisy channels, and the
outputs are the MFCCs of clean speech.
10i.e., linear mapping (using Eq. (2)) the features from multiple DS-beam-

formed sources (with a binary masking post-filter).

TABLE V
RECOGNITION ACCURACIES (AS PERCENTAGES) OF SUPER-DIRECTIVE
BEAMFORMER WITH A SUBSEQUENT BINARY MASKING POST-FILTER
(SDMASK) AND A COMBINATION OF SDMASK WITH FEATURE-
SPACE MAXIMUM LIKELIHOOD LINEAR REGRESSION (FMLLR)

AND OUR MLP FEATURE MAPPING (MMSDMASK)

TABLE VI
RECOGNITION ACCURACIES (AS PERCENTAGES) OF TRAINING MLP
ON THE S1 AND S12 CONDITIONS BUT TESTING ON THE S13 AND
S123 CONDITIONS. “DSMASK” AND “MMDSMASK” ARE CITED

FROM THE UPPER PART OF TABLE III FOR COMPARISON

following experiments to testify MLP’s generalization abilities.
An MLP with two directed delay-and-sum (DS) beamformers
followed by a binary masking post-filter is trained over 1,000
(500 each from S1 and S12 scenarios) utterances which are
from the development data set. The test conditions consist
of all the four scenarios (S1, S1S2, S1S3, and S123). As
shown in Table VI, in average this setup (denoted by “MmDS-
maskS”) performs better than “DSmask”. Compared to the
original “MmDSmask”, “MmDSmaskS” provides marginally
better performance for S1 and S12 scenarios (matched con-
ditions), which are used for training MLP. As for the unseen
(or mismatched) S13 scenario, “MmDSmaskS” performs
slightly worse than “MmDSmask” but performs significantly
worse for the unseen (or mismatched) S123 scenario. These
tendencies also occur when using the super-directive (SD)
beamforming with a subsequent binary masking post-filter
(“SDmaskS+fMLLR” and “MmSDmaskS” in Table VI). This
may be explained because the inputs of MLP for the S13 sce-
nario are similar to those of the S12 scenario while the inputs
of MLP for the S123 scenario differ far from those for the S12
scenario, in which the trained MLP weights are not capable to
recover the clean features.
The data used for the experiments aforementioned were

recorded in the same room, and thus they have the same
acoustic characteristics. In order to testify whether the pro-
posed method can work in a different acoustic condition, 200
utterances are recorded using a circular microphone array
(20 cm diameter) as same as MONC database [6] but in a

m m m rectangular room (reverberation time
) in Nagaoka University of Technology, Japan,

as shown in Fig. 9. 200 different clean utterances are displayed
through three loudspeakers in Fig. 9. A multi-channel recording
device “Tokyo Electron device TD-BD-16ADUSB” was used
for recording. In this experimental setup, MLP weights are
trained on MONC database [6] while the test data are from this
new environment (denoted by “MmDSmask2” in Table VII).
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Fig. 9. The configuration of speech data recorded in Nagaoka University of
Technology, Japan.

TABLE VII
RECOGNITION ACCURACIES (AS PERCENTAGES) OF NEWLY RECORDED DATA.
FOR ALL THE METHODS, THEIR ACOUSTIC MODELS ARE TRAINED OVER
MONC DATABASE [6]. FOR “SDMASK2+FMLLR2” AND “MMDSMASK2”

THE MLP WEIGHTS ARE TRAINED ON MONC DATABASE [6]. FOR
COMPARISON “DS” IS CITED FROM THE UPPER PART OF TABLE I. “DSMASK”
AND “MMDSMASK” ARE CITED FROM THE UPPER PART OF TABLE III.
“SDMASK+FMLLR” IS CITED FROM TABLE V. NOTE THAT FOR “DS”,

“DSMASK”, “SDMASK+FMLLR”, AND “MMDSMASK” THEIR TRAININGS AND
TESTINGS ARE PERFORMED UNDER MATCHED CONDITIONS, WHILE “FOR
DS2”, “DSMASK2”, “SDMASK2+FMLLR2”, AND “MMDSMASK2” THEIR

TRAININGS AND TESTINGS ARE PERFORMED UNDER MISMATCHED CONDITIONS

“DS2” and “DSmask2” denote DS beamformer and with a
binary masking post-filter respectively, which are applied to
the newly recorded data with their acoustic models trained
over MONC database [6]. The original “DS”, “DSmask”, “SD-
mask+fMLLR”, and “MmDSmask” in MONC database [6] are
cited for comparison. Note that for “DS”, “DSmask”, “SD-
mask+fMLLR”, and “MmDSmask” their trainings and testings
are performed under matched conditions, while “for DS2”,
“DSmask2”, “SDmask2+fMLLR2”, and “MmDSmask2” their
trainings and testings are performed under mismatched condi-
tions. As shown in Table VII, for all the methods the recognition
results in this new acoustic environment are significantly worse
than those in MONC database (under matched conditions).
The reasons may be that the reverberation time in the new
environment is remarkably longer than that in the MONC en-
vironment, and the speech qualities recorded by multi-channel
recording device “Tokyo Electron device TD-BD-16ADUSB”
are not as high as MONC data. “SDmask2+fMLLR2” and
“MmDSmask2” still outperform “DS2” and “DSmask2”,
however its recognition accuracies are far lower than those
of the original “SDmask+fMLLR” and “MmDSmask”. This
may be explained by the fact that the inputs of MLP in the

new environments are different from those used for training
MLP, and the originally trained MLP weights are no longer
feasible in the new environment. To address this problem, we
will investigate training an MLP over the speech recorded from
various acoustic environments in the future.

IX. CONCLUSIONS AND FUTURE WORK

We have presented our approach to improving the recognition
performance of overlapping speech using a non-linear feature
mapping method. We first employed the full-vector based map-
ping in log mel-filterbank energy (log MFBE) domain and im-
proved recognition accuracy by re-training the acoustic model
over the generated training data. We then improved the recog-
nition accuracy by exploring the mapping of the extracted fea-
tures between different domains. Finally the best recognition
performance was achieved by using a microphone array to ex-
tract the features from the directions of the target and inter-
fering sound sources, whichwas followed bymapping these fea-
tures to those of clean speech. The proposed approach achieved
considerable improvements in ASR performance for overlap-
ping multi-speaker conditions, and was also effective for the
single non-overlapping condition. We discovered that our pro-
posed approach resulted in a non-linear processing (fusion) of
the target and interfering speech, and the improved qualities of
the estimated target and interfering speech were very helpful in
improving the ASR performance using our proposed non-linear
feature mapping method. We also demonstrated that the well
estimated feature vectors (i.e., MFCCs), obtained via our final
proposed method, could avoid the need for adaptation to a par-
ticular recording scenario.
There are several areas where further investigation is needed.

In the MONC corpus, the clean speech is available, however
in real applications actual clean speech is not readily available,
and instead close-talking microphones (CTM) are usually em-
ployed. It is worth investigation the recognition performance of
the our proposed mapping method using CTM speech. We plan
to extend this work to more realistic environments (e.g., over-
lapping speech encountered in meeting scenarios), and detect
speaker overlap and non-overlap regions in multi-party meet-
ings and train/adapt the MLP directly using close-talking mi-
crophone speech as target speech.
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